Code: R5320201

III B.Tech II Semester (R05) Supplementary Examinations, April/May 2011 DIGITAL SIGNAL PROCESSING

(Electrical & Electronics Engineering, Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Instrumentation & Control Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) What are the advantages and disadvantages of digital signal processing over analog signal processing? Explain.
 - (b) Check the given system for:
 - i. Linearity
 - ii. Causality
 - iii. Stability
 - iv. Time invariance.
- 2. (a) Compute the discrete Fourier transform of each of the following finite length sequences considered to be of length N.
 - i. $x(n) = \delta(n)$
 - ii. $x(n) = \delta(n n_0)$ iii. $x(n) = a^n$

where $0 < n_0 < 1$

$$0 \le n \le N$$
 –

- (b) Let $x_2(n)$ be a finite duration sequence of length N and $x_1(n) = \delta(n n_0)$ where $n_0 < N$. Obtain the circular convolution of two sequences.
- 3. (a) Implement the Decimation in frequency FFT algorithm of N-point DFT where N-8. Also explain the steps involved in this algorithm.
- 4. (a) With reference to Z-transform, state the initial and final value theorem.
 - (b) Determine the causal signal x(n) having the Z-transform $X(Z) = \frac{Z^2 + Z}{(Z \frac{1}{2})^2 (Z \frac{1}{2})}$.
- 5. (a) Compare Butterworth filter and chybeshev filter approximations
 - (b) Convert the analog filter to a digital filter whose transfer function is $H(s) = 36/(s + 0.1)^2 + 36$

Use bilinear transformation with $\omega_r = 0.2\pi$.

- 6. (a) Give the comparison of FIR and IIR filters.
 - (b) Express the different window functions used in FIR filter design and sketch the plots in time domain.
- 7. Consider the signal $x(n) = a^n u(n)$, |a| < 1
 - (a) Determine the spectrum of a signal.
 - (b) The signal is applied to a decimator that reduces sampling rate by a factor by '2'. Determine its output spectrum.
 - (c) Show that the spectrum in part (ii) is simply Fourier transform of x(2n).
- 8. Explain the evolution of TMS 320 DSP processors family.